

**eBook** 

# Recycled Metal in Aerospace:

# Technical Considerations for Powder Production

How Continuum Powders Delivers Certified Scrap-to-Powder Solutions for Critical Aerospace and Defense Applications.





# The Materials Pressure in Aerospace

- Global supply chain fragility for aerospace-grade superalloys (Ni718, Ti64, M247, etc.)
- Geopolitical instability, mining constraints, and energy costs drive raw material price volatility.
- Expanding demand for high-performance alloys in additive manufacturing.
- Sustainability mandates: Scope 3 emissions, material circularity, and decarbonization targets.

#### The Challenge to Overcome:

Aerospace already incorporates reclaimed metals on a large scale. The challenge lies in extending proven recycling principles to new alloys and new feedstock forms like gas atomized powder, where process control is crucial.





## Aerospace Is Already Reclaiming Metal at Scale

#### **Boeing & Alcoa Closed-Loop Program**

- Reclaims over 8 million pounds per year of 2XXX and 7XXX aluminum alloy scrap.
- Remelted, recertified, and reintroduced into aerospace-grade billet stock.
- Maintains full traceability and mechanical property assurance.

Source1

#### **Rolls-Royce Revert Program**

- Processes over 95% of engine manufacturing waste and retired parts.
- Reclaimed nickel, titanium, and cobalt-based superalloys.
- Full metallurgical traceability into new certified engine components.
- Supports both ESG targets and cost control of raw materials.

Source<sup>2</sup>

#### Conclusion:

Reclaimed alloys are already operating in the highest-risk aerospace systems. The issue is no longer feasibility; it's precision control.

<sup>&</sup>lt;sup>1</sup>Boeing and Alcoa Form 'Closed-Loop' Program To Boost Recycling of Aluminum Aerospace Alloys | Howmet

<sup>&</sup>lt;sup>2</sup> Rolls-Royce Revert



# The Unique Requirements of Powder-Based AM

Powder metallurgy introduces additional sensitivities beyond ingot or billet-based metallurgy:

| VARIABLE                   | RISK                                          | IMPACT                                      |
|----------------------------|-----------------------------------------------|---------------------------------------------|
| Chemistry<br>variation     | Scrap misclassification,<br>melt loss         | Composition drift outside AMS/ASTM specs    |
| Oxygen<br>pickup           | Excessive remelt cycles, oxidation            | Reduced ductility,<br>fatigue resistance    |
| Inclusion<br>contamination | Heavy particle carryover,<br>tool wear debris | Porosity initiation, crack propagation      |
| PSD &<br>morphology        | Irregular<br>atomization                      | Flowability degradation,<br>density defects |

Even minor compositional drift or morphological variation can compromise the mechanical properties of AM parts.



# **Defining "Recycled"**for Additive Manufacturing

Conventional powder reuse ≠ true alloy recycling:



#### Powder reuse:

- Post-build sieving of unused AM powder
- Debris inclusion risk (spatter, condensates)
- Chemistry unchanged, but contamination accumulates
- Changes in powder particle size distribution and properties



### Continuum's scrap-to-powder model:

- · Scrap certified to the original AMS/ASTM alloy specifications
- Flexible scrap form compatibility, including solids, powders, chips, turnings, etc.
- Full remelting and atomization into a new powder
- · Virgin-equivalent chemistry and powder quality
- Inclusion management via cold hearth refining



### **Continuum's Process Controls:**

### Scrap to Spec

# 1 Feedstock Qualification

- Certified turnings, solids, oversized powder, and retired components
- · Traceable to source heat certification
- Alloy class verification (e.g., Ni718, M247, Ti64, etc.)

## 2 Feedstock Qualification

- Mechanical cleaning (e.g., tumbling, shot blasting)
- Chemical cleaning (e.g., solvent degreasing, acid etch)
- Alloy sorting & chemical assay validation (ICP-OES, XRF, GDMS)
- · Heavy metal impurity screening

### Melt-to-Powder Atomization (Greyhound M2P)

- Plasma melting in controlled atmosphere
- Cold hearth refining molten pool allows dense inclusions to settle
- Direct gas atomization yields highly spherical particles
- Single-step melt minimizes oxidation risk

# 4 Post-Processing & QA

- Sieving for PSD control
- Flowability testing
- Apparent density and tap density verification
- Chemistry confirmation (ASTM E1473, E2991 standards)
- Inclusion analysis via SEM/metallography
- Batch traceability documentation



# Performance Validation: Virgin-Equivalent Output



### **Technical Outputs:**

- PSDs: Customized PSD ranges for multiple applications
- Flowability: Consistent with virgin powders (Hall flow, Carney flow)
- Oxygen levels: Controlled to standard AMS/ASTM limits
- Chemistry: Verified against target AMS specifications for relevant alloys
- Inclusion levels: Reduced by cold hearth refining



### **Mechanical Property Performance:**

• Tensile strength, elongation, fatigue, and creep meet design allowable targets.

Powder produced from qualified reclaimed feedstock performs equivalently to virgin raw material when processed under Continuum's controlled system.



### **Added Benefits:**

# Economics & Sustainability

| ADVANTAGE                   | VALUE                                                 |
|-----------------------------|-------------------------------------------------------|
| Raw material cost reduction | Eliminates virgin ore dependency                      |
| Pricing<br>predictability   | Insulated from geopolitical commodity swings          |
| Supply chain resilience     | Domestic scrap sourcing reduces global logistics risk |
| ESG<br>alignment            | Up to 99.7% CO₂ emissions reduction (OSU LCA study)   |
| Qualification<br>support    | Batch documentation and full QA traceability          |

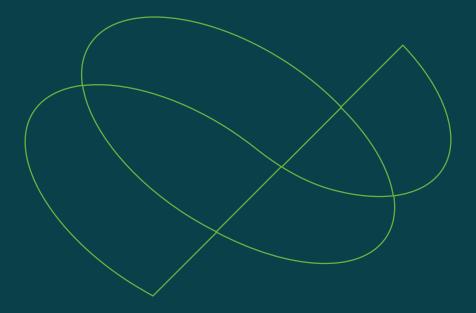


### **Conclusion:**

### Precision-Controlled Circularity

Through chemistry-controlled, inclusion-managed, and process-validated scrap-to-powder production, Continuum Powders enables:

- Lower powder procurement costs
- Stable long-term supply contracts
- · Certified traceability with aerospace QA processes
- Significant reductions in environmental impact


Recycled alloys are already flying. The next step is applying advanced process control to deliver certified powders for additive manufacturing.



### Technical Inquiries & Qualification Support

Request a technical consultation, powder sample evaluation, or detailed data package: continuumpowders.com/contact

- continuumpowders.com/contact



Proudly Designed, Sourced & Manufactured in the USA



**Production & Sales Center** 14406 Wagg Way Road Houston, TX 77041

Technology & Innovation Center 27705 Dutcher Creek Cloverdale, CA 95425